
ScriptEngine HPC Task Package

Uwe Fladrich

Apr 28, 2023

CONTENTS:

1 Introduction 1

2 SLURM tasks 3
2.1 The hpc.slurm.sbatch task . 3
2.2 Saving the SLURM JOBID . 4
2.3 SLURM Heterogeneous Job Support . 4

3 Environment module tasks 7
3.1 Prerequisites . 7
3.2 The hpc.module task . 7
3.3 The hpc.module.load task . 8
3.4 The init argument . 8

4 Indices and tables 9

i

ii

CHAPTER

ONE

INTRODUCTION

The ScriptEngine HPC Task package (SE HPC Tasks).

1

ScriptEngine HPC Task Package

2 Chapter 1. Introduction

CHAPTER

TWO

SLURM TASKS

Support for the SLURM workload manager.

2.1 The hpc.slurm.sbatch task

This task allows to send ScriptEngine jobs to SLURM queues by providing the functionallity of the SLURM sbatch
command to ScriptEngine scripts. The usage pattern is:

- hpc.slurm.sbatch:
scripts: <SE_SCRIPT | LIST_OF_SE_SCRIPTS> # optional
hetjob_spec: <LIST_OF_SBATCH_OPTIONS> # optional
submit_from_sbatch: <true | false> # optional, default False
stop_after_submit: <true | false> # optional, default True
set_jobid: <CONTEXT_NAME> # optional

<SBATCH_OPTIONS> # optional

The main usage principle of hpc.slurm.sbatch is that a new batch job is created and sent into a SLURM queue.
Once SLURM executes the job, one or more ScriptEngine scripts are run.

There are two ways to specify which scripts are run in the batch job. By default (no script argument is given),
the batch job runs the script(s) given on the se command line. For example, if the following script (assumed name
sbatch.yml):

- hpc.slurm.sbatch:
account: <MY_SLURM_ACCOUNT>
time: !noparse 0:10:00

- base.echo:
msg: Hello world, from batch job!

is run with se sbatch.yml, a batch job will be queued, which eventually writes “Hello world, from batch job!” to the
default job logfile. Using this default will be the desired behavior in most use cases. However, it is possible to have
the batch job run a different script (or scripts) and not the initiall one, by specifying one or more other ScriptEngine
scripts with the scripts arguments. More than one scripts have to specified as a list.

Most of the hpc.slurm.sbatch arguments will be passed right through to the sbatch command. Thus, in the above
example, the command executed under the hood is:

sbatch --account MY_SLURM_ACCOUNT --time 0:10:00 se sbatch.yml

3

ScriptEngine HPC Task Package

Only few arguments are processed by the hpc.slurm.sbatch task itself, see the usage pattern above. Thus, it is
possible to use any sbatch argument, as long as they are valid long arguments (i.e. with the double dash syntax). Note
that no checking is done for validity of the sbatch arguments and options!

An important principle of hpc.slurm.sbatch is that on the initial execution, it will stop the processing of the current
script once the batch job is queued. Hence, when the above example script is run, a job is put in the batch queue (first
task), but the base.echo task is not executed. When the script is run (again) from within the batch job, the hpc.
slurm.sbatch task detects that it is in a batch job and does nothing. Therefore, the following echo task is run as part
of the job.

Again, this behavior will be appropriate in most use cases. The script is run until the sbatch task, a job is queued and
processing stops. Once the job is running, hpc.slurm.sbatch does nothing and all other tasks are run.

Sometimes, though, it makes sense to submit a batch job even if the current script already runs in a batch job itself. For
example, one may want to queue a follow-on job at the end of the script. In order to do this, one needs to set:

- hpc.slurm.sbatch:
[...]
submit_from_sbatch: true
[...]

If submit_from_sbatch is set to true a new job is queued, even if the current script is itself running in a batch job
on its own.

A related switch is stop_after_submit, which defaults to True. If it is set to False the script will continue after a
new SLURM job was submitted. If stop_after_submit is not explicitly set (or set to True) the script execution will
be stopped, as described above.

2.2 Saving the SLURM JOBID

When the job submission via SLURM sbatch succeeds, it is possible to save the JOBID of the new job in the
ScriptEngine context. For this, the set_jobid task argument can be set to a key for the context dictionary. If
set_jobid is not given (or set to False), the JOBID is not stored in the context. Note that only simple context
keys, no dot-separated values, are supported.

Example:

- hpc.slurm.sbatch:
[...]
set_jobid: jobid
[...]

- base.echo:
msg: "Submitted job with ID {{jobid}}."

2.3 SLURM Heterogeneous Job Support

The hpc.slurm.sbatch task support submitting heterogeneous SLURM jobs by providing the hetjob_spec option:

- hpc.slurm.sbatch:
- time: 10
- hetjob_spec:

- nodes: 1
(continues on next page)

4 Chapter 2. SLURM tasks

https://slurm.schedmd.com/heterogeneous_jobs.html

ScriptEngine HPC Task Package

(continued from previous page)

- nodes: 2

- base.command:
name: srun
args: [

-l,
--ntasks, 1, /usr/bin/hostname, ':',
--ntasks, 10, --ntasks-per-node, 5, /usr/bin/hostname

]

In this example, a heterogeneous job with two components is submitted to SLURM, the first requesting one node and
the second two nodes. The srun command in the second task of the script starts executables on this allocated nodes
while specifying further job characteristics (such as the number of tasks and tasks per node).

The hetjob_spec argument takes a list of dictionaries and passes the keys of each dictionary on to sbatch as spec-
ification for each respective component of the heterogeneous job. Note that in the example above, each dictionary
contains only one key-value pair, the number of requested nodes.

2.3. SLURM Heterogeneous Job Support 5

ScriptEngine HPC Task Package

6 Chapter 2. SLURM tasks

CHAPTER

THREE

ENVIRONMENT MODULE TASKS

The ScriptEngine HPC Task package allows interaction with environment modules, often used on HPC systems to con-
figure the user’s environment for installed software packages. This task package supports the two most common module
implementations: Lmod (https://lmod.readthedocs.io) and Environment Modules (https://modules.readthedocs.io).

The ScriptEngine tasks in this package allow modules to be loaded or unloaded in SE scripts and can thus modify the
environment and available software during the execution of scripts.

3.1 Prerequisites

A fairly recent version of either Lmod (source code at https://github.com/TACC/Lmod) or Environment modules (http:
//modules.sourceforge.net) is needed. In particular, the module version should provide Python3 initialisation scripts.

If, however, the module version installed on an HPC system does not provide Python3 init scripts, it is possible to
initialise the tasks from a user-provided initialisation script. This allows to use the ScriptEngine module tasks even on
systems with an outdated module system. See The init argument below.

3.2 The hpc.module task

Runs any module command.

Usage:

- hpc.module:
cmd: <COMMAND_NAME>
args: <LIST_OF_ARGS> # optional

Note that no checking is done as to wether the command and arguments are valid! In particular, there is no guarantee that
the command will run given the particular module implementation (Environment modules or Lmod) and the version
installed on the HPC system. The command name and arguments are passed to the underlying module system and
runtime errors reported via ScriptEngine.

For example:

- hpc.module:
cmd: list

will run module list and write the result to standard output.

If the module command requires arguments, they are given via the task argument args. The arguments have to be
specified as a list (even if there is only one):

7

https://lmod.readthedocs.io
https://modules.readthedocs.io
https://github.com/TACC/Lmod
http://modules.sourceforge.net
http://modules.sourceforge.net

ScriptEngine HPC Task Package

- hpc.module:
cmd: show
args: [gcc/10.2]

3.3 The hpc.module.load task

This task is provided for convenience, as it allows for a shorter syntax to load modules (compared to the hpc.module
task using cmd: load)

Usage:

- hpc.module.load:
names: <MODULE_NAME | LIST_OF_MODULE_NAMES>

Examples:

- hpc.module.load:
names:
- gcc/10.2
- netcdf/4.3.0

If there is only a single module to be loaded, the name can be given without using a list:

- hpc.module.load:
names: git/2.19.3

3.4 The init argument

As mentioned under Prerequisites, the hpc.module tasks need Python3 initialisation scripts, usually provided by recent
versions of the module systems. Sometimes, however, older module versions are installed on some HPC systems
and Python3 support is missing. What the hpc.module scripts really need is an initialisation script, the rest of the
implementation usually works fine even with older module versions. Hence, it is possible to manually provide the
initialisation scripts.

In order to provide a user defined initialisation script, the init argument can be added to any of the module tasks
(hpc.module or hpc.module.load). Since the initialisation is only done once, the init argument is only needed at
the first task executed. If the init argument is present at any subsequent task, it is ignored. If the init argument is
missing at the first executed task (and default initialisation does not work) initialisation will fail.

The init argument must specify the path at which the initialisation script can be found, for example:

- hpc.module.load:
init: /home/user/lmod/init/env_modules_python.py
names: gcc/10.2

- hpc.module:
cmd: list

In order to follow which task is initialising the module system and from what location, run ScriptEngine with se
--loglevel debug [...].

8 Chapter 3. Environment module tasks

CHAPTER

FOUR

INDICES AND TABLES

• genindex

9

	Introduction
	SLURM tasks
	The hpc.slurm.sbatch task
	Saving the SLURM JOBID
	SLURM Heterogeneous Job Support

	Environment module tasks
	Prerequisites
	The hpc.module task
	The hpc.module.load task
	The init argument

	Indices and tables

