

The ScriptEngine HPC Task Package Documentation

Contents:

	Introduction

	SLURM tasks
	The hpc.slurm.sbatch task

	Saving the SLURM JOBID

	SLURM Heterogeneous Job Support

	Environment module tasks
	Prerequisites

	The hpc.module task

	The hpc.module.load task

	The init argument

Indices and tables

	Index

Introduction

The ScriptEngine HPC Task package (SE HPC Tasks).

SLURM tasks

Support for the SLURM workload manager.

The hpc.slurm.sbatch task

This task allows to send ScriptEngine jobs to SLURM queues by providing the
functionallity of the SLURM sbatch command to ScriptEngine scripts. The
usage pattern is:

- hpc.slurm.sbatch:
 scripts: <SE_SCRIPT | LIST_OF_SE_SCRIPTS> # optional
 hetjob_spec: <LIST_OF_SBATCH_OPTIONS> # optional
 submit_from_sbatch: <true | false> # optional, default False
 stop_after_submit: <true | false> # optional, default True
 set_jobid: <CONTEXT_NAME> # optional

 <SBATCH_OPTIONS> # optional

The main usage principle of hpc.slurm.sbatch is that a new batch job is
created and sent into a SLURM queue. Once SLURM executes the job, one or more
ScriptEngine scripts are run.

There are two ways to specify which scripts are run in the batch job. By default
(no script argument is given), the batch job runs the script(s) given on the
se command line. For example, if the following script (assumed name
sbatch.yml):

- hpc.slurm.sbatch:
 account: <MY_SLURM_ACCOUNT>
 time: !noparse 0:10:00

- base.echo:
 msg: Hello world, from batch job!

is run with se sbatch.yml, a batch job will be queued, which eventually
writes “Hello world, from batch job!” to the default job logfile. Using this
default will be the desired behavior in most use cases. However, it is possible
to have the batch job run a different script (or scripts) and not the initiall
one, by specifying one or more other ScriptEngine scripts with the scripts
arguments. More than one scripts have to specified as a list.

Most of the hpc.slurm.sbatch arguments will be passed right through to the
sbatch command. Thus, in the above example, the command executed under the
hood is:

sbatch --account MY_SLURM_ACCOUNT --time 0:10:00 se sbatch.yml

Only few arguments are processed by the hpc.slurm.sbatch task itself, see
the usage pattern above. Thus, it is possible to use any sbatch argument, as
long as they are valid long arguments (i.e. with the double dash syntax). Note
that no checking is done for validity of the sbatch arguments and options!

An important principle of hpc.slurm.sbatch is that on the initial execution,
it will stop the processing of the current script once the batch job is queued.
Hence, when the above example script is run, a job is put in the batch queue
(first task), but the base.echo task is not executed. When the script is run
(again) from within the batch job, the hpc.slurm.sbatch task detects that it
is in a batch job and does nothing. Therefore, the following echo task is run as
part of the job.

Again, this behavior will be appropriate in most use cases. The script is run
until the sbatch task, a job is queued and processing stops. Once the job is
running, hpc.slurm.sbatch does nothing and all other tasks are run.

Sometimes, though, it makes sense to submit a batch job even if the current
script already runs in a batch job itself. For example, one may want to queue a
follow-on job at the end of the script. In order to do this, one needs to set:

- hpc.slurm.sbatch:
 [...]
 submit_from_sbatch: true
 [...]

If submit_from_sbatch is set to true a new job is queued, even if the
current script is itself running in a batch job on its own.

A related switch is stop_after_submit, which defaults to True. If it is
set to False the script will continue after a new SLURM job was submitted.
If stop_after_submit is not explicitly set (or set to True) the script
execution will be stopped, as described above.

Saving the SLURM JOBID

When the job submission via SLURM sbatch succeeds, it is possible to save the
JOBID of the new job in the ScriptEngine context. For this, the set_jobid
task argument can be set to a key for the context dictionary. If set_jobid
is not given (or set to False), the JOBID is not stored in the context.
Note that only simple context keys, no dot-separated values, are supported.

Example:

- hpc.slurm.sbatch:
 [...]
 set_jobid: jobid
 [...]
- base.echo:
 msg: "Submitted job with ID {{jobid}}."

SLURM Heterogeneous Job Support

The hpc.slurm.sbatch task support submitting heterogeneous SLURM jobs [https://slurm.schedmd.com/heterogeneous_jobs.html] by providing the
hetjob_spec option:

- hpc.slurm.sbatch:
 - time: 10
 - hetjob_spec:
 - nodes: 1
 - nodes: 2

- base.command:
 name: srun
 args: [
 -l,
 --ntasks, 1, /usr/bin/hostname, ':',
 --ntasks, 10, --ntasks-per-node, 5, /usr/bin/hostname
]

In this example, a heterogeneous job with two components is submitted to SLURM,
the first requesting one node and the second two nodes. The srun command in
the second task of the script starts executables on this allocated nodes while
specifying further job characteristics (such as the number of tasks and tasks
per node).

The hetjob_spec argument takes a list of dictionaries and passes the keys of
each dictionary on to sbatch as specification for each respective component
of the heterogeneous job. Note that in the example above, each dictionary
contains only one key-value pair, the number of requested nodes.

Environment module tasks

The ScriptEngine HPC Task package allows interaction with environment modules,
often used on HPC systems to configure the user’s environment for installed
software packages. This task package supports the two most common module
implementations: Lmod (https://lmod.readthedocs.io) and Environment Modules
(https://modules.readthedocs.io).

The ScriptEngine tasks in this package allow modules to be loaded or unloaded in
SE scripts and can thus modify the environment and available software during the
execution of scripts.

Prerequisites

A fairly recent version of either Lmod (source code at
https://github.com/TACC/Lmod) or Environment modules
(http://modules.sourceforge.net) is needed. In particular, the module version
should provide Python3 initialisation scripts.

If, however, the module version installed on an HPC system does not provide
Python3 init scripts, it is possible to initialise the tasks from a
user-provided initialisation script. This allows to use the ScriptEngine module
tasks even on systems with an outdated module system. See The init argument
below.

The hpc.module task

Runs any module command.

Usage:

- hpc.module:
 cmd: <COMMAND_NAME>
 args: <LIST_OF_ARGS> # optional

Note that no checking is done as to wether the command and arguments are
valid! In particular, there is no guarantee that the command will run given the
particular module implementation (Environment modules or Lmod) and the version
installed on the HPC system. The command name and arguments are passed to the
underlying module system and runtime errors reported via ScriptEngine.

For example:

- hpc.module:
 cmd: list

will run module list and write the result to standard output.

If the module command requires arguments, they are given via the task argument
args. The arguments have to be specified as a list (even if there is only
one):

- hpc.module:
 cmd: show
 args: [gcc/10.2]

The hpc.module.load task

This task is provided for convenience, as it allows for a shorter syntax to load
modules (compared to the hpc.module task using cmd: load)

Usage:

- hpc.module.load:
 names: <MODULE_NAME | LIST_OF_MODULE_NAMES>

Examples:

- hpc.module.load:
 names:
 - gcc/10.2
 - netcdf/4.3.0

If there is only a single module to be loaded, the name can be given without
using a list:

- hpc.module.load:
 names: git/2.19.3

The init argument

As mentioned under Prerequisites, the hpc.module tasks need Python3
initialisation scripts, usually provided by recent versions of the module
systems. Sometimes, however, older module versions are installed on some HPC
systems and Python3 support is missing. What the hpc.module scripts really
need is an initialisation script, the rest of the implementation usually works
fine even with older module versions. Hence, it is possible to manually provide
the initialisation scripts.

In order to provide a user defined initialisation script, the init argument
can be added to any of the module tasks (hpc.module or hpc.module.load).
Since the initialisation is only done once, the init argument is only needed
at the first task executed. If the init argument is present at any
subsequent task, it is ignored. If the init argument is missing at the first
executed task (and default initialisation does not work) initialisation will
fail.

The init argument must specify the path at which the initialisation script
can be found, for example:

- hpc.module.load:
 init: /home/user/lmod/init/env_modules_python.py
 names: gcc/10.2

- hpc.module:
 cmd: list

In order to follow which task is initialising the module system and from what
location, run ScriptEngine with se --loglevel debug [...].

Index

 nav.xhtml

 Table of Contents

 		
 The ScriptEngine HPC Task Package Documentation

 		
 Introduction

 		
 SLURM tasks

 		
 The hpc.slurm.sbatch task

 		
 Saving the SLURM JOBID

 		
 SLURM Heterogeneous Job Support

 		
 Environment module tasks

 		
 Prerequisites

 		
 The hpc.module task

 		
 The hpc.module.load task

 		
 The init argument

_static/file.png

_static/minus.png

_static/plus.png

